

Further Pure Mathematics 2 Practice Paper 1 – answers

Exam-style practice: A level

1	$x \equiv 31 \pmod{75}$						
2	a	56					
	b	Cayley table is					
		\mathbf{x}_{12}	1	5	7	11	
		1	1	5	7	11	
		5	5	1	11	7	
		7	7	11	1	5	
		11	11	7	5	1	

Closure: All entries in the Cayley table are in S_A Identity: The row and column corresponding to 1 are the same as the column and row headings, so 1 is the identity. Inverse: All elements are self-inverse Associativity: Assumed So S_A forms a group under \times_{12} . Since all elements have order < 2, there are no elements that can act as generator for the group, so S_A is a non-cyclic group. c S_n has element 3 with order 4, so S_n is a cyclic

group of order 4. S_c has $1^2 = 3^2 = 5^2 = 7^2 = 1$, so has no elements of order 4, so $S_c \not\cong S_n$ Since there are only two possible groups of order 4, SA must be isomorphic to either S_B or S_C .

d Assume $n \ge 6$. Then $2^2 = 4$, which is not in the set, so the set is not closed under \times_s , so cannot be a group. So $n \le 4$. When n is either 2 or 4, $2^2 = 4 \equiv 0$, but 0 is not in the set either, so the set is not closed under ×, Therefore the set cannot form a group under \times_{κ} for any even n.

3 a
$$(x + 4)^2 + (y - 2)^2 = 34$$

b, c In arg $(z + 1) = \frac{\pi}{2}$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$
 $(x + 4)^2 + (y - 2)^2 = 34$

4 a i $\sqrt{2}$

ii 2; 2 is repeated as (1 - 2) is a repeated factor in the characteristic equation.

$$\mathbf{b} \begin{pmatrix} \sqrt{\frac{2}{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$\mathbf{c} \quad \mathbf{D} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{3}} & 0 & \sqrt{\frac{2}{3}} \end{pmatrix}$$

5 a
$$I_{n+2} = S_{n+2} + M_{n+2} + D_{n+2}$$

 $= \frac{1}{6}I_{n+1} + \left(\frac{2}{3}I_{n+1} - \frac{1}{6}I_n\right) + d$
 $= \frac{5}{6}I_{n+1} - \frac{1}{6}I_n + d$
b $I_n = 5d\left(\frac{1}{3}\right)^n - 7d\left(\frac{1}{2}\right)^n + 3d$

c As
$$n \to \infty$$
, $I_x \to 3d$
6 a $a = 2$ b $\frac{16\pi}{3}$

7 a
$$I_{n+1} = [-\cos x \sin^{2n+1} x]_0^n + (2n+1) \int_0^\pi \sin^{2n} x \cos^{2n} dx$$

= $(2n+1) \int_0^\pi \sin^{2n} x (1-\sin^2 x) dx$
= $(2n+1) (I_n - I_{n+1})$
 $2n+1$

$$\Rightarrow 1_{n+1} = \frac{2n+1}{2n+2}I_n$$

b Basis: $n = 0$: $\frac{0! \times \pi}{(0!)^2 \times 2^0} = \pi$
Assumption: $\int_0^{\pi} \sin^{2k}x \, dx = \frac{(2k)!\pi}{(k!)^2 2^{2k}}$
Induction:
 $\int_0^{\pi} \sin^{2(k+1)}x \, dx = I_{k+1} = \frac{2k+1}{2k+2}\int_0^{\pi} \sin^{2k}x \, dx$
 $= \frac{(2k+1)(2k)!\pi}{2(k+1)(k!)^2 2^{2k}} = \frac{(2k+2)!\pi}{2^2(k+1)^2(k!)^2 2^{2k}}$
 $= \frac{(2(k+1))!\pi}{((k+1)!)^2 2^{2(k+1)}}$
So if the solution is valid for $n = k$, it is valid for $n = k + 1$

Conclusion: The solution is valid for all
$$n \in \mathbb{Z}$$
, $n \ge 0$
8 a 2916 b 3439